HORIZONS A YES ENERGY.

Long Term Noda LMP Forecast

UNLOCK FUTURE MARKET INSIGHTS WITH A LONG TERM NODAL LMP FORECAST

The Long Term Nodal LMP Forecast from Horizons Energy offers a powerful tool for understanding future market dynamics across 100,000 nodes in the U.S. power grid. Key deliverables methodology, and assumptions are covered below.

Key Deliverables

- Hourly LMP & components, 2024 2050 for 100k nodes across the U.S.
- Updated twice per year
- Includes all Gen Buses and all Load Buses 69 kV+ across all U.S. ISOs (10k ERCOT Buses, 20k WECC Buses, 70k El Buses)
- Viewable on Yes Energy maps and Time Series charts
- Includes supporting assumptions

Methodology

The Long Term Nodal LMP Forecast is a bankable forecast produced by Horizons Energy using the EnCompass Long Term Planning Model. Specific methodologies for the zonal and nodal components of the forecast are described below.

Zonal Methodology: A long-term zonal price forecast is produced in EnCompass for the areas in Figure 1 taking into account the below market drivers:

- Regional forecasts of electricity demand
- Economic growth rate
- Efficiency, BTM, DR, DEG, EV
- Fuel prices natural gas, coal, uranium and oil
- The economics of candidate resources
- Capital costs of renewables and storage
- Existing resources, retirements, known additions
- Transfer limits between market areas
- Market rules, tariff and interchange between BA's

All forecast prices are benchmarked for accuracy against historical prices, as seen in Figure 2.

Figure 1 - North America Area Definitions

Zonal to Nodal Methodology: EnCompass uses topology from interconnect-published power flow models to run a full nodal simulation for select future years (see Table 1). Nodal prices are then regressed against zonal prices, resulting in a monthly regression equation for each node, accounting for both low- and high-congestion hours. These regression equations are applied to the zonal price forecast (discussed above) for the years listed in Table 1. Figures 3 and 4 provide an overview of this process.

Table 1 - Model Topology Used for Nodal Forecasting

Interconnect	Model Year(s)	Model Name	Notes
ERCOT	2026, 2028, 2031	Steady State Working Group Summer 1 model (SSWG)	Currently using 2031 topology for zonal to nodal relationships. Will add additional years in Q2 2025.
WECC	2028, 2029, 2034	Heavy Summer 2 model	Currently using 2028 topology for zonal to nodal relationships. Will add additional years in Q2 2025.
EI	2025, 2026, 2029, 2034	Multiregional Model Working Group Summer Peak Load Case (MMWG)	Currently using 2025 topology for zonal to nodal relationships. Will add additional years in Q2 2025.

Figure 3 - Zonal to Nodal Methodology

Figure 4 - Zonal to Nodal Regression Example

Included Assumptions

- Generation mix changes
- Gen production
- Load growth
- Fuel prices
- Emission prices
- Policy
- Assumptions explorable in Yes Energy and documented in release notes

About Horizons Energy

With over 50 years of combined experience in North American power markets, the Horizons team is recognized as experts in advanced integrated resource planning and regional power market analytics. Their expertise includes asset valuation, market intelligence, environmental analysis, public policy, and integrated resource planning. Their client base includes municipalities, investor-owned utilities (IOUs), state utility regulators, banks, and developers.

Node Name	Zone	Type	Averag
(S_INKS_G1	SOUTH	GENERAT	95.5
ATARINA_B1	SOUTH	GENERAT	85.1
VANCOURT_RN	SOUTH	GENERAT	82.7
NEBULA_RN	SOUTH	GENERAT	82.7
RUSSEKST_RN	WEST SOUTH	GENERAT GENERAT	81.03
AMISTAD_ALL			
HAMI_BESS_RN	SOUTH	GENERAT	72.8
IN_INDNENR_2	WEST	GENERAT GENERAT GENERAT GENERAT	72.7 72.7 70.6 70.3 69.4
IN_INDNENR			
MCLNSLR_RN	SOUTH		
ZIER_SLR_ALL	SOUTH WEST		
APPALOSA_ALL	WEST	GENERAT	68.0
BRP_PBL2_RN	SOUTH	GENERAT	68.0
BRP_PBL1_RN	SOUTH	GENERAT	68.0
ECLIPSE_UN1	SOUTH	GENERAT	64.1
ANACACHO_ANA	SOUTH	GENERAT	61.8
JUNCTION_RN	WEST	GENERAT	58.9
BATCAVE_RN	SOUTH	GENERAT	58.8
FERMLALL	SOUTH	CENEDAT	1000

Say yes to a free demo!

